Answer:
Density = 3 x 10⁻⁵ kg/m³
Explanation:
First, we will find the volume of the planet:
[tex]V = \frac{4}{3}\pi r^3\ (radius\ of\ sphere)\\\\V = \frac{4}{3}\pi (8000\ m)^3\\\\V = 2.14\ x\ 10^{12}\ m^3[/tex]
Now, we will use the expression for gravitational force to find the mass of the planet:
[tex]g = \frac{Gm}{r^2}\\\\m = \frac{gr^2}{G}[/tex]
where,
m = mass = ?
g = acceleration due to gravity = 6.67 x 10⁻¹¹ m/s²
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ Nm²/kg²
r = radius = 8000 m
Therefore,
[tex]m = \frac{(6.67\ x\ 10^{-11}\ m/s^2)(8000\ m)^2}{6.67\ x\ 10^{-11}\ Nm^/kg^2}\\\\m = 6.4\ x\ 10^7\ kg[/tex]
Therefore, the density will be:
[tex]Density = \frac{m}{V} = \frac{6.4\ x\ 10^7\ kg}{2.14\ x\ 10^{12}\ m^3}[/tex]
Density = 3 x 10⁻⁵ kg/m³