Answer:
The answer is "[tex]9a^4b^{10}(2+6a^6b^5)(2-6a^6b^5)[/tex]"
Step-by-step explanation:
For point a:
[tex]36a^4b^{10} - 81a^{16}b^{20}[/tex] by GCF
Calculating the const terms:[tex]36 \ n \ 81, \ GCF \ is\ 9\times 4 \ n \ 9\times 9[/tex]
Calculating the terms [tex]w\ a: a^4 \ n \ a^{16},\ GCF \ is\ a^4 \ n \ a^4 \times \ a^{12}[/tex]
Calculating the terms [tex]w \ b: b^{10}\ n\ b^{20}, \ GCF \ is\ b^{10}\ n \ b^{10} \times b^{10}[/tex]
Including the GCFs, [tex]36a^4 b^{10} - 81a^{16}b^{20}[/tex]
[tex]=9a^4b^{10}(4 - 9a^{12}b^{10})\\\\4=2^2 n 9a^{12}b^{10}\\\\=(3a^6b^5)^2[/tex]
Calculating the difference of squares
[tex]\to A^2 - B^2 = (A+B)(A-B)\\\\\to 4 - 9a^{12}b^{10} \\\\\to (2+3a^6b^5)(2-3a^6b^5)\\\\[/tex]
substituting
[tex]\to 36a^4b^{10} - 81a^{16}b^{20}\\\\\to 9a^4b^{10}(2+3a^6b^5)(2-3a^6b^5)[/tex]
For point b:
Calculating the difference of squares:
[tex]A^2 - B^2 = (A+B)(A-B)\\\\36a^4b^{10}=(6a^2b^5)^2\\\\81a^{16}b^{20}=(9a^8b^{10})^2\\\\36a^4b^{10} - 81a^{16}b^{20}\\\\=(6a^2b^5+9a^8b^{10})(6a^2b^5-9a^8b^{10})\\\\=3a^2b^5(2+6a^6b^5)3a^2b^5(2-6a^6b^5)\\\\=9a^4b^{10}(2+6a^6b^5)(2-6a^6b^5)[/tex]