Answer:
The rectangular prism has the greater volume
Step-by-step explanation:
Given
Prism:
[tex]Length = Width = a[/tex]
[tex]Height = h[/tex]
Cylinder
[tex]Diameter = a[/tex]
[tex]Height = h[/tex]
Required
Shape with greater volume
The volume of a rectangular prism is:
[tex]Volume = Length * Base * Height[/tex]
So, we have:
[tex]V_1 = a*a*h[/tex]
[tex]V_1 = a^2h[/tex]
The volume of a cylinder is:
[tex]Volume = \pi r^2h[/tex]
Where
[tex]r = \frac{d}{2}[/tex]
[tex]r = \frac{a}{2}[/tex]
So, we have:
[tex]V_2 = \pi *(a/2)^2 h[/tex]
[tex]V_2 = \pi *\frac{a^2}{4} h[/tex]
[tex]\pi = 3.14[/tex]
So:
[tex]V_2 = 3.14*\frac{a^2}{4} h[/tex]
[tex]V_2 = \frac{3.14}{4} a^2h[/tex]
[tex]V_2 = 0.785 a^2h[/tex]
So, we have:
[tex]V_1 = a^2h[/tex]
[tex]V_2 = 0.785 a^2h[/tex]
Both expressions have the same factor but different coefficient
The expression with greater coefficient has the greater volume
So, the [tex]rectangular[/tex] [tex]prism \\[/tex] has the [tex]greater[/tex] [tex]volume[/tex]
Because: [tex]1 > 0.785[/tex]