A rectangular prism and a cylinder have the same height. The length of each side of the prism base is equal to the diameter of the cylinder. Which shape has a greater volume? Drag and drop the labels to explain your answer.

Respuesta :

Answer:

The rectangular prism has the greater volume

Step-by-step explanation:

Given

Prism:

[tex]Length = Width = a[/tex]

[tex]Height = h[/tex]

Cylinder

[tex]Diameter = a[/tex]

[tex]Height = h[/tex]

Required

Shape with greater volume

The volume of a rectangular prism is:

[tex]Volume = Length * Base * Height[/tex]

So, we have:

[tex]V_1 = a*a*h[/tex]

[tex]V_1 = a^2h[/tex]

The volume of a cylinder is:

[tex]Volume = \pi r^2h[/tex]

Where

[tex]r = \frac{d}{2}[/tex]

[tex]r = \frac{a}{2}[/tex]

So, we have:

[tex]V_2 = \pi *(a/2)^2 h[/tex]

[tex]V_2 = \pi *\frac{a^2}{4} h[/tex]

[tex]\pi = 3.14[/tex]

So:

[tex]V_2 = 3.14*\frac{a^2}{4} h[/tex]

[tex]V_2 = \frac{3.14}{4} a^2h[/tex]

[tex]V_2 = 0.785 a^2h[/tex]

So, we have:

[tex]V_1 = a^2h[/tex]

[tex]V_2 = 0.785 a^2h[/tex]

Both expressions have the same factor but different coefficient

The expression with greater coefficient has the greater volume

So, the [tex]rectangular[/tex] [tex]prism \\[/tex] has the [tex]greater[/tex] [tex]volume[/tex]

Because: [tex]1 > 0.785[/tex]

ACCESS MORE