If angle a has the terminal ray that falls in the fourth quadrant and cosine a equals 5/9 then determine the value of sin a in simplest radical form

Respuesta :

Answer: [tex]-\dfrac{2\sqrt{14}}{9}[/tex]

Step-by-step explanation:

Given

[tex]\cos a=\dfrac{5}{9}[/tex]

[tex]a[/tex] lies in the fourth quadrant

So, sine must be negative in the fourth quadrant

Using identity [tex]\sin ^2 x+\cos^2 x=1[/tex] to find sine value

[tex]\Rightarrow \sin^2 a=1-\dfrac{5^2}{9^2}[/tex]

[tex]\\\\\Rightarrow \sin^2 a=1-\dfrac{25}{81}\\\\\\\Rightarrow \sin^2 a=\dfrac{56}{81}\\\\\\\Rightarrow \sin a=-\sqrt{\dfrac{56}{81}}\\\\\\\Rightarrow \sin a=-\dfrac{2\sqrt{14}}{9}[/tex]

ACCESS MORE