Respuesta :

Answer:

[tex]y=-x+10[/tex]

Step-by-step explanation:

Hi there!

Slope intercept form: [tex]y=mx+b[/tex] where m is the slope of the line and b is the y-intercept (the value of y when the line crosses the y-axis)

1) Find the slope (m)

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex] where the two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]

Plug in the given points (2,8),and (8,2)

​[tex]m=\frac{2-8}{8-2}\\m=\frac{-6}{6}\\m=-1[/tex]

Therefore, the slope of the line is -1. Plug this into  [tex]y=mx+b[/tex]:

[tex]y=-x+b[/tex]

2) Find the y-intercept (b)

[tex]y=-x+b[/tex]

Plug in a given point and solve for b

[tex]8=-2+b[/tex]

Add 2 to both sides

[tex]8+2=-2+b+2\\10=b[/tex]

Therefore, the y-intercept is 10. Plug this back into [tex]y=-x+b[/tex]:

[tex]y=-x+10[/tex]

I hope this helps!

ACCESS MORE