Respuesta :

Answer:

Perimeter of rectangle ABCD = 32.8 unit (Approx.)

Step-by-step explanation:

Given:

Hypotenuse BD = 12 unit

Angle θ = 30°

Find:

Perimeter of rectangle ABCD

Computation:

Using trigonometry function

Sin θ = Perpendicular / Hypotenuse

Sin 30 = CD / BD

0.5 = CD / 12

Length of CD = 6 unit

Cos θ = Base / Hypotenuse

Sin 30 = BC / BD

0.866 = BC / 12

Length of BC = 10.4 unit

Perimeter of rectangle ABCD = 2[Length + Width]

Perimeter of rectangle ABCD = 2[6 + 10.4]

Perimeter of rectangle ABCD = 2[16.4]

Perimeter of rectangle ABCD = 32.8 unit (Approx.)

The perimeter of rectangle ABCD = 32.8 unit

We have given that,Hypotenuse BD = 12 unit

Angle θ = 30°

To find the perimeter of rectangle ABCD

Using trigonometry function

What is the formula for the sin ratio?

Sin θ = Perpendicular / Hypotenuse

Sin 30 = CD / BD

0.5 = CD / 12

Length of CD = 6 unit

What is the ratio of cos theta?

Cos θ = adjucent side / Hypotenuse

Sin 30 = BC / BD

0.866 = BC / 12

Length of BC = 10.4 unit

Formula for the perimeter of rectangle ABCD = 2(Length + Width)

Perimeter of rectangle ABCD = 2(6 + 10.4)

Perimeter of rectangle ABCD = 2(16.4)

Therefore,the perimeter of rectangle ABCD = 32.8 unit

To learn more about the perimeter visit:

https://brainly.com/question/19819849

ACCESS MORE