Respuesta :

Answer:

[tex]y = -5[/tex]

Step-by-step explanation:

Given

[tex]B = (7,-3)[/tex]

[tex]C = (6,y)[/tex]

[tex]A = (4,-9)[/tex]

Required

The y coordinate of C

Since A, B and C are on the same line, the slope of AB and the slope of AC will be the same.

Slope (m) is calculated as:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

For AC

[tex]A = (4,-9)[/tex]     [tex]C = (6,y)[/tex]    

[tex]m = \frac{y - -9}{6 - 4}[/tex]

[tex]m = \frac{y +9}{2}[/tex]

For AB

[tex]A = (4,-9)[/tex]       [tex]B = (7,-3)[/tex]

[tex]m = \frac{-3 --9}{7-4}[/tex]

[tex]m = \frac{-3 +9}{3}[/tex]

[tex]m = \frac{6}{3}[/tex]

[tex]m = 2[/tex]

So, we have:

[tex]m = \frac{y +9}{2}[/tex] and [tex]m = 2[/tex]

[tex]m = m[/tex]

[tex]\frac{y +9}{2} = 2[/tex]

Multiply both sides by 2

[tex]y +9 = 4[/tex]

Solve for y

[tex]y = 4-9[/tex]

[tex]y = -5[/tex]

Hence, the y coordinate of C is -5

ACCESS MORE