Respuesta :

Answer:

[tex]\cot 330^{\circ} = -\sqrt{3}[/tex]

Step-by-step explanation:

The cotangent function can be rewritten by trigonometric relations, that is:

[tex]\cot 330^{\circ} = \frac{1}{\tan 330^{\circ}} = \frac{\cos 330^{\circ}}{\sin 330^{\circ}}[/tex] (1)

By taking approach the periodicity properties of the cosine and sine function (both functions have a period of 360°), we use the following equivalencies:

[tex]\sin 330^{\circ} = \sin (-30^{\circ}) = -\sin 30^{\circ}[/tex] (2)

[tex]\cos 330^{\circ} = \cos (-30^{\circ}) = \cos 30^{\circ}[/tex] (3)

By (2) and (3) in (1), we have following expression:

[tex]\cot 330^{\circ} = -\frac{\cos 30^{\circ}}{\sin 30^{\circ}}[/tex]

If we know that [tex]\sin 30^{\circ} = \frac{1}{2}[/tex] and [tex]\cos 30^{\circ} = \frac{\sqrt{3}}{2}[/tex], then the result of the trigonometric expression is:

[tex]\cot 330^{\circ} = -\frac{\frac{\sqrt{3}}{2} }{\frac{1}{2} }[/tex]

[tex]\cot 330^{\circ} = -\sqrt{3}[/tex]

Answer:

negative square root of 3

Step-by-step explanation:

ACCESS MORE