Respuesta :

Space

Answer:

[tex]\displaystyle f'(16) = \frac{1}{32}[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
  • Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

Step 1: Define

[tex]\displaystyle f(x) = \sqrt[4]{x}[/tex]

f'(16) is x = 16 for the derivative f'(x)

Step 2: Differentiate

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                               [tex]\displaystyle f(x) = x^{\frac{1}{4}}[/tex]
  2. Basic Power Rule:                                                                                         [tex]\displaystyle f'(x) = \frac{1}{4}x^{\frac{1}{4} - 1}[/tex]
  3. Simplify:                                                                                                         [tex]\displaystyle f'(x) = \frac{1}{4}x^{\frac{-3}{4}}[/tex]
  4. Rewrite [Exponential Rule - Rewrite]:                                                           [tex]\displaystyle f'(x) = \frac{1}{4x^{\frac{3}{4}}}[/tex]

Step 3: Solve

  1. Substitute in x [Derivative]:                                                                           [tex]\displaystyle f'(16) = \frac{1}{4(16)^{\frac{3}{4}}}[/tex]
  2. Evaluate exponents:                                                                                     [tex]\displaystyle f'(16) = \frac{1}{4(8)}[/tex]
  3. Multiply:                                                                                                         [tex]\displaystyle f'(16) = \frac{1}{32}[/tex]

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

RELAXING NOICE
Relax