Respuesta :
Answer:
[tex]\displaystyle y'(27) = \frac{1}{27}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
Calculus
Derivatives
Derivative Notation
Basic Power Rule
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
Step 1: Define
y = ∛x
x = 27
Step 2: Differentiate
- [Function] Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle y = x^{\frac{1}{3}}[/tex]
- Basic Power Rule: [tex]\displaystyle y' = \frac{1}{3}x^{\frac{1}{3} - 1}[/tex]
- Simplify: [tex]\displaystyle y' = \frac{1}{3}x^{-\frac{2}{3}}[/tex]
- Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle y' = \frac{1}{3x^{\frac{2}{3}}}[/tex]
Step 3: Solve
- Substitute in x [Derivative]: [tex]\displaystyle y'(27) = \frac{1}{3(27)^{\frac{2}{3}}}[/tex]
- Evaluate exponents: [tex]\displaystyle y'(27) = \frac{1}{3(9)}[/tex]
- Multiply: [tex]\displaystyle y'(27) = \frac{1}{27}[/tex]
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e