Answer:
[tex]\displaystyle d = 15[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point (-6, 6)
Point (3, -6)
Step 2: Identify
(-6, 6) → x₁ = -6, y₁ = 6
(3, -6) → x₂ = 3, y₂ = -6
Step 3: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(3--6)^2+(-6-6)^2}[/tex]
- [√Radical] (Parenthesis) Subtract/Add: [tex]\displaystyle d = \sqrt{(9)^2+(-12)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{81+144}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{225}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle d = 15[/tex]