Answer:
Multiply row 1 by [tex]\frac{1}{2}[/tex].
Step-by-step explanation:
The augmented matrix of the system of linear equation is described below:
[tex]\left[\begin{array}{cccc}2&1&-1&-8\\0&2&3&-6\\-\frac{1}{2} &1&1&-4\end{array}\right][/tex]
Where [tex]a_{11} = 2[/tex], if we need to create [tex]a_{11} = 1[/tex], we need to multiply row 1 by [tex]\frac{1}{2}[/tex], that is to say:
[tex]\left[\begin{array}{cccc}1&\frac{1}{2} &-\frac{1}{2} &-4\\0&2&3&-6\\-\frac{1}{2} &1&1&-4\end{array}\right][/tex]
Hence, the correct answer is: Multiply row 1 by [tex]\frac{1}{2}[/tex].