Respuesta :

Answer:

[tex]\log _972 = 1.9463[/tex]

Step-by-step explanation:

Given

[tex]\log_972[/tex]

Required

Solve

Using the following laws of logarithm

[tex]\log _ab = \frac{\log b}{\log a}[/tex]

We have:

[tex]\log _972 = \frac{\log 72}{\log 9}[/tex]

Express 72 as 9 * 8

[tex]\log _972 = \frac{\log (9 * 8)}{\log 9}[/tex]

So, we have:

[tex]\log _972 = \frac{\log (9) + \log(8)}{\log 9}[/tex]

Split

[tex]\log _972 = \frac{\log (9)}{\log 9} + \frac{\log(8)}{\log 9}[/tex]

[tex]\log _972 = 1 + \frac{\log(8)}{\log 9}[/tex]

Express 8 and 9 as exponents

[tex]\log _972 = 1 + \frac{\log(2^3)}{\log 3^2}[/tex]

This gives:

[tex]\log _972 = 1 + \frac{3\log 2}{2\log 3}[/tex]

[tex]\log 2 = 0.3010[/tex]

[tex]\log 3 = 0.4771[/tex]

So, we have:

[tex]\log _972 = 1 + \frac{3*0.3010}{2*0.4771}[/tex]

[tex]\log _972 = 1 + \frac{0.9030}{0.9542}[/tex]

[tex]\log _972 = 1 + 0.9463\\[/tex]

[tex]\log _972 = 1.9463[/tex]

ACCESS MORE