18. Use common logarithms to approximate log,9 72 to four decimal places.
![18 Use common logarithms to approximate log9 72 to four decimal places class=](https://us-static.z-dn.net/files/dbc/594b06d3a2756c7a509145efcadc84f9.png)
Answer:
[tex]\log _972 = 1.9463[/tex]
Step-by-step explanation:
Given
[tex]\log_972[/tex]
Required
Solve
Using the following laws of logarithm
[tex]\log _ab = \frac{\log b}{\log a}[/tex]
We have:
[tex]\log _972 = \frac{\log 72}{\log 9}[/tex]
Express 72 as 9 * 8
[tex]\log _972 = \frac{\log (9 * 8)}{\log 9}[/tex]
So, we have:
[tex]\log _972 = \frac{\log (9) + \log(8)}{\log 9}[/tex]
Split
[tex]\log _972 = \frac{\log (9)}{\log 9} + \frac{\log(8)}{\log 9}[/tex]
[tex]\log _972 = 1 + \frac{\log(8)}{\log 9}[/tex]
Express 8 and 9 as exponents
[tex]\log _972 = 1 + \frac{\log(2^3)}{\log 3^2}[/tex]
This gives:
[tex]\log _972 = 1 + \frac{3\log 2}{2\log 3}[/tex]
[tex]\log 2 = 0.3010[/tex]
[tex]\log 3 = 0.4771[/tex]
So, we have:
[tex]\log _972 = 1 + \frac{3*0.3010}{2*0.4771}[/tex]
[tex]\log _972 = 1 + \frac{0.9030}{0.9542}[/tex]
[tex]\log _972 = 1 + 0.9463\\[/tex]
[tex]\log _972 = 1.9463[/tex]