Kirk made the graph to show his prediction of a population of bacteria over time. Which function best models the data in the graph?
mc001-1. jpg
mc001-3. jpg
mc001-2. jpg
mc001-4. jpg

Jana predicts that the population, y, will grow according to y = 12 log(x + 1) + 10, where x is the time in minutes. How much greater does Kirk’s model predict the population will be after 60 minutes than Jana’s model?
✔ greater by about 50 bacteria

Respuesta :

Answer:

greater by about 50 bacteria

hope this helps,

T

Step-by-step explanation:

Populations can be modeled by exponential functions and logarithm functions.

  • Kirk's function is: [tex]\mathbf{f(x) = (10)2^{\frac{x}{20}}}[/tex]
  • Kirk’s model predict the population will be greater than about 50 bacteria after 60 minutes than Jana’s model

Kirk's graph is an exponential function, and it is represented as:

[tex]\mathbf{y = ab^x}[/tex]

From the graph (see attachment);

x = 0, when y =10.

So, we have:

[tex]\mathbf{10 = ab^0}[/tex]

[tex]\mathbf{10 = a\times 1}[/tex]

[tex]\mathbf{10 = a}[/tex]

Rewrite as:

[tex]\mathbf{a = 10 }[/tex]

Substitute [tex]\mathbf{a = 10 }[/tex] in [tex]\mathbf{y = ab^x}[/tex]

So, we have:

[tex]\mathbf{y = 10(b)^x}[/tex]

x = 20, when y =20.

[tex]\mathbf{20 = 10(b)^{20}}[/tex]

Divide both sides by 10

[tex]\mathbf{2 = b^{20}}[/tex]

Take 20th root of both sides

[tex]\mathbf{b = 2^{\frac{1}{20}}}[/tex]

Substitute [tex]\mathbf{b = 2^{\frac{1}{20}}}[/tex] in [tex]\mathbf{y = 10(b)^x}[/tex]

[tex]\mathbf{y = 10(2^{\frac{1}{20}})^x}[/tex]

[tex]\mathbf{y = (10)2^{\frac{x}{20}}}[/tex]

Represent as function

[tex]\mathbf{f(x) = (10)2^{\frac{x}{20}}}[/tex]

So, Kirk's function is: [tex]\mathbf{f(x) = (10)2^{\frac{x}{20}}}[/tex]

When x = 60, we have:

[tex]\mathbf{f(60) = (10)2^{\frac{60}{20}}}[/tex]

[tex]\mathbf{f(60) = (10)2^3}[/tex]

[tex]\mathbf{f(60) = (10)8}[/tex]

[tex]\mathbf{f(60) = 80}[/tex] ---- Kirk's model

For Jana's model, we have:

[tex]\mathbf{y = 12log(x + 1) + 10}[/tex]

Substitute 60 for x

[tex]\mathbf{y = 12log(60 + 1) + 10}[/tex]

[tex]\mathbf{y = 12log(61) + 10}[/tex]

Using a calculator, we have:

[tex]\mathbf{y \approx 31}[/tex] --- Jana's model

Calculate the difference between both models

[tex]\mathbf{d = 80 - 31}[/tex]

[tex]\mathbf{d = 49}[/tex]

Approximate

[tex]\mathbf{d \approx 50}[/tex]

Hence, Kirk’s model predict the population will be greater than about 50 bacteria after 60 minutes than Jana’s model

Read more about population models at:

https://brainly.com/question/8993571

Ver imagen MrRoyal
ACCESS MORE