Answer:
The average rate of change of the function over the interval is of 6.
Step-by-step explanation:
Average rate of change:
The average rate of change of a function h(x) over an interval [a,b] is given by:
[tex]A = \frac{h(b)-h(a)}{b-a}[/tex]
In this question:
Over the interval [-9,-2], so [tex]a = -9, b = -2, b - a = -2 -(-9) = 7[/tex]
The function is:
[tex]h(x) = -x^2 - 5x + 14[/tex]
[tex]h(-9) = -9^2 -5(-9) + 14 = -81 + 45 + 14 = -22[/tex]
[tex]h(-2) = -2^2 -5(-2) + 14 = -4 + 10 + 14 = 20[/tex]
Then
[tex]A = \frac{h(-2)-h(-9)}{7} = \frac{20-(-22)}{7} = \frac{42}{7} = 6[/tex]
The average rate of change of the function over the interval is of 6.