Respuesta :

Answer:

The inverse of the function is [tex]f^{-1}(x) = \sqrt[3]{\frac{x-16}{8}}[/tex]

Step-by-step explanation:

Inverse of a function:

Suppose we have a function y = g(x). To find the inverse, we exchange the values of x and y, and then isolate y.

In this question:

[tex]y = \frac{x^3}{8} + 16[/tex]

Exchanging x and y:

[tex]x = \frac{y^3}{8} + 16[/tex]

[tex]\frac{y^3}{8} = x - 16[/tex]

[tex]y^3 = \frac{x-16}{8}[/tex]

[tex]y = \sqrt[3]{\frac{x-16}{8}}[/tex]

The inverse of the function is [tex]f^{-1}(x) = \sqrt[3]{\frac{x-16}{8}}[/tex]

ACCESS MORE