The graph at the right shows
a function, f, graphed on the
domain 0 < x < 8.
The section from A to B is a
straight segment.
The section from B to C is
represented by y = (x - 5)^2

1. Find the slope of the segment from A to B.

2. Find the x-coordinate of the relative minimum
value of the graph from B to C.

3. Find the value of f (3) + f (4) + f (6) + f (7).

The graph at the right shows a function f graphed on the domain 0 lt x lt 8 The section from A to B is a straight segment The section from B to C is represented class=

Respuesta :

Answer:

Step-by-step explanation:

1). Since, line segment AB passes through two points ((0, 0) and (3, 4)

Therefore, slope of the segment = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

                                                        = [tex]\frac{4-0}{3-0}[/tex]

                                                        = [tex]\frac{4}{3}[/tex]

2). Relative minimum of the graph from B to C → (5, 0)

   Therefore, x-coordinate of the relative minimum → x = 5

3). From the graph attached,

   f(3) = 4

   f(4) = 1

   f(6) = 1

   f(7) = 4

   Therefore, f(3) + f(4) + f(6) + f(7) = 4 + 1 + 1 + 4

                                                          = 10

ACCESS MORE