Scott delivers 14 newspapers in 10min. This is 28% of his round. A) How many more papers does Scott need to deliver? b) Scott continues to deliver papers at the same rate, How long will it take to deliver all of them?

Respuesta :

Nayefx

Answer:

A)36

B)50 minutes 40 second

Step-by-step explanation:

Question-A:

according to the question

[tex] \begin{array}{ccc}28\% \: \: \text{newspaper} \implies 14 \\ 100\% \: \: \text{newspaper} \implies \displaystyle \frac{14 }{28\%}\\ \rm since \: \% = \dfrac{1}{100} \: we \: get : \\ \\ \displaystyle \xrightarrow{ } \frac{14}{ \dfrac{28}{100} } \\ \\ \xrightarrow{ \rm \: simplify \: complex \: fraction} \displaystyle \: 14 \times \frac{100}{28} \\ \xrightarrow{simplify} 50 \end{array} [/tex]

since he had already delivered 14 newspaper he needs to deliver

[tex] \displaystyle 50 - 14[/tex]

simplify Substraction:

[tex] \displaystyle36[/tex]

Question-B:

remember that,

[tex] \displaystyle \text{rate} = \frac{ \rm \: amount}{ \rm time} [/tex]

given that,

  • amount:14
  • time:10

thus substitute:

[tex] \displaystyle \text{rate} = \frac{ \rm 7}{ \rm5} [/tex]

so,

[tex] \displaystyle \frac{ \rm 7}{ \rm5} \times 36[/tex]

simplify:

[tex] \displaystyle 50.4[/tex]

hence,

It will take 50 minutes 40 second to deliver all of them