Respuesta :

Step-by-step explanation:

sin(theta)÷costheta+sintheta/sintheta÷COStheta- sintheta

sintheta+sintheta×costheta/sintheta-sintheta-costheta

sintheta(1+Costheta)/sintheta(1-costheta)

1+1÷Sectheta/1-1÷Sectheta

sectheta+1÷sectheta/sectheta-1÷sectheta

sectheta+1/sectheta-1

Answer:

TO PROVE :-

  • [tex]\frac{\tan \theta + \sin \theta}{\tan \theta - \sin \theta} = \frac{\sec \theta + 1}{\sec \theta - 1}[/tex]

SOLUTION :-

First of all , simplify L.H.S.

[tex]\frac{\tan \theta + \sin \theta}{\tan \theta - \sin \theta}[/tex]

  • Use [tex]\tan \theta = \frac{\sin \theta}{\cos \theta}[/tex]  in place of tanθ.

[tex]=> \frac{\frac{\sin \theta}{\cos \theta} + \sin \theta }{\frac{\sin \theta}{\cos \theta} - \sin \theta}[/tex]

  • Take sinθ common from both numerator & denominator.

[tex]=> \frac{\sin \theta (\frac{1}{\cos \theta} + 1) }{\sin \theta (\frac{1}{\cos \theta}- 1) }[/tex]

  • Cancel the sinθ from both numerator & denominator.

[tex]=> \frac{\frac{1}{\cos \theta} +1}{\frac{1}{\cos \theta} -1}[/tex]

  • Use [tex]\sec \theta = \frac{1}{\cos \theta}[/tex]

[tex]=> \frac{\sec \theta + 1}{\sec \theta - 1}[/tex]

∴ L.H.S. = R.H.S

ACCESS MORE