Respuesta :
1/3x*3-4*3≤ 2*3+x*3
x-12≤6+3x
-12-6≤3x-x
-18/2≤2x/2
-9≤x
OR
1÷3x-4≤ 2+x
x-12≤6+3x
-12-6≤3x-x
-18/2≤2x/2
-9≤x
Answer:
[-9 ≤ x] or [x ≥ -9]
Step-by-step explanation:
QUESTION :-
Find the solution set of → [tex]\frac{1}{3} x - 4 \leq 2+ x[/tex]
SOLUTION :-
- Simplify the L.H.S.
[tex]=> \frac{x-12}{3} \leq x + 2[/tex]
- Multiply both the sides by 3
[tex]=> \frac{x - 12}{3} \times 3 \leq 3(x + 2)[/tex]
[tex]=> x - 12 \leq 3x +6[/tex]
- Substract 'x' from both the sides
[tex]=> x - 12 - x \leq 3x + 6 -x[/tex]
[tex]=> -12 \leq 2x + 6[/tex]
- Substract 6 from both the sides.
[tex]=> -12 - 6 \leq 2x + 6 - 6[/tex]
[tex]=> -18 \leq 2x[/tex]
- Divide both the sides by 2.
[tex]=> \frac{-18}{2} \leq \frac{2x}{2}[/tex]
[tex]=> -9 \leq x[/tex] or [tex]x \geq -9[/tex]