Respuesta :

1/3x*3-4*3≤ 2*3+x*3

x-12≤6+3x

-12-6≤3x-x

-18/2≤2x/2

-9≤x

OR

1÷3x-4≤ 2+x

x-12≤6+3x

-12-6≤3x-x

-18/2≤2x/2

-9≤x

Answer:

[-9 ≤ x] or [x ≥ -9]

Step-by-step explanation:

QUESTION :-

Find the solution set of →  [tex]\frac{1}{3} x - 4 \leq 2+ x[/tex]

SOLUTION :-

  • Simplify the L.H.S.

[tex]=> \frac{x-12}{3} \leq x + 2[/tex]

  • Multiply both the sides by 3

[tex]=> \frac{x - 12}{3} \times 3 \leq 3(x + 2)[/tex]

[tex]=> x - 12 \leq 3x +6[/tex]

  • Substract 'x' from both the sides

[tex]=> x - 12 - x \leq 3x + 6 -x[/tex]

[tex]=> -12 \leq 2x + 6[/tex]

  • Substract 6 from both the sides.

[tex]=> -12 - 6 \leq 2x + 6 - 6[/tex]

[tex]=> -18 \leq 2x[/tex]

  • Divide both the sides by 2.

[tex]=> \frac{-18}{2} \leq \frac{2x}{2}[/tex]

[tex]=> -9 \leq x[/tex]  or  [tex]x \geq -9[/tex]

ACCESS MORE