Respuesta :

msm555

Answer:

[tex] \frac{1}{m - n} - \frac{m + n}{m {}^{2} - n {}^{2} } [/tex]

Factor if necessary:

x²-y²=(x+y)(x-y) use this formula

[tex]\frac{1}{m - n} - \frac{m + n}{ {(m + n)(m - n)}}[/tex]

[tex]\frac{1}{m - n} - \frac{1}{ {(m - n)}}[/tex]

Take lcm and subtract:

=0

Answer:

0

Step-by-step explanation:

We need to simplify the given expression . The given expression is ,

→ 1/ ( m - n) - (m + n)/ ( m² - n² )

→ 1/ ( m - n) - ( m + n)/(m+n)(m-n)

  • Using a² - b² = (a+b)(a-b)
  • Now cancel m+n in numerator and denominator .

→ 1/( m - n) - 1/ ( m - n)

→ 0

Hence the required answer is 0 .