What is the perimeter of parallelogram RSTU, rounded to the nearest whole number?
![What is the perimeter of parallelogram RSTU rounded to the nearest whole number class=](https://us-static.z-dn.net/files/d41/1474b8908f96f1628d1f67f8dec6c66e.jpg)
Given:
The vertices of the parallelogram RSTU are R(-4,4), S(2,6), T(6,2) and U(0,0).
To find:
The perimeter of parallelogram RSTU, rounded to the nearest whole number.
Solution:
Distance formula:
[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using the distance formula, we get
[tex]RS=\sqrt{(2-(-4))^2+(6-4)^2}[/tex]
[tex]RS=\sqrt{(6)^2+(2)^2}[/tex]
[tex]RS=\sqrt{36+4}[/tex]
[tex]RS=\sqrt{40}[/tex]
[tex]RS=6.32[/tex]
Similarly,
[tex]ST=\sqrt{\left(6-2\right)^2+\left(2-6\right)^2}[/tex]
[tex]ST\approx 5.66[/tex]
[tex]TU=\sqrt{\left(0-6\right)^2+\left(0-2\right)^2}[/tex]
[tex]TU\approx 6.32[/tex]
[tex]RU=\sqrt{\left(0-\left(-4\right)\right)^2+\left(0-4\right)^2}[/tex]
[tex]RU\approx 5.66[/tex]
Now, the perimeter of the parabola is:
[tex]P=RS+ST+TU+RU[/tex]
[tex]P=6.32+5.66+6.32+5.66[/tex]
[tex]P=23.96[/tex]
[tex]P\approx 24[/tex]
The perimeter of the parallelogram RSTU is 24 units.
Therefore, the correct option is C.
Note: Unit of perimeter cannot be in square.