Respuesta :

Given:

The vertices of the parallelogram RSTU are R(-4,4), S(2,6), T(6,2) and U(0,0).

To find:

The perimeter of parallelogram RSTU, rounded to the nearest whole number.

Solution:

Distance formula:

[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Using the distance formula, we get

[tex]RS=\sqrt{(2-(-4))^2+(6-4)^2}[/tex]

[tex]RS=\sqrt{(6)^2+(2)^2}[/tex]

[tex]RS=\sqrt{36+4}[/tex]

[tex]RS=\sqrt{40}[/tex]

[tex]RS=6.32[/tex]

Similarly,

[tex]ST=\sqrt{\left(6-2\right)^2+\left(2-6\right)^2}[/tex]

[tex]ST\approx 5.66[/tex]

[tex]TU=\sqrt{\left(0-6\right)^2+\left(0-2\right)^2}[/tex]

[tex]TU\approx 6.32[/tex]

[tex]RU=\sqrt{\left(0-\left(-4\right)\right)^2+\left(0-4\right)^2}[/tex]

[tex]RU\approx 5.66[/tex]

Now, the perimeter of the parabola is:

[tex]P=RS+ST+TU+RU[/tex]

[tex]P=6.32+5.66+6.32+5.66[/tex]

[tex]P=23.96[/tex]

[tex]P\approx 24[/tex]

The perimeter of the parallelogram RSTU is 24 units.

Therefore, the correct option is C.

Note: Unit of perimeter cannot be in square.