Respuesta :

Given:

The figure of triangle ABC.

The area of the triangle ABC is D.

[tex]m\angle B=\sin ^{-1}(\dfrac{m}{n})[/tex]

To find:

The value of m and n in the given expression.

Solution:

Let h be the height of the triangle ABC.

Area of a triangle is:

[tex]Area=\dfrac{1}{2}\times base\times h[/tex]

Where, b is the base and h is the height of the triangle.

[tex]Area=\dfrac{1}{2}\times a\times h[/tex]

The area of the triangle ABC is D.

[tex]D=\dfrac{1}{2}\times a\times h[/tex]

[tex]2D=ah[/tex]

[tex]\dfrac{2D}{a}=h[/tex]                  ...(i)

In a right angle triangle,

[tex]\sin \theta =\dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]\sin B =\dfrac{h}{c}[/tex]

[tex]\sin B =\dfrac{1}{c}\times \dfrac{2D}{a}[/tex]              [Using (i)]

[tex]\sin B =\dfrac{2D}{ac}[/tex]

[tex]m\angle B =\sin ^{-1}\dfrac{2D}{ac}[/tex]            ...(ii)

We have,

[tex]m\angle B=\sin ^{-1}(\dfrac{m}{n})[/tex]          ...(iii)

On comparing (ii) and (iii), we get

[tex]m=2D[/tex]

[tex]n=ac[/tex]

Therefore, the required values are [tex]m=2D, n=ac[/tex].

Ver imagen erinna
ACCESS MORE