b) In the given figure, If AB = AC and < ABC = 65°, Find the value of
<ACB & <BAC.
A
65°
B
C
![b In the given figure If AB AC and lt ABC 65 Find the value ofltACB amp ltBACA65BC class=](https://us-static.z-dn.net/files/d38/78e32a10164ab80cb13328be5eedc007.jpg)
Answer:
<ACB = [tex]65^{o}[/tex] and <BAC = [tex]50^{o}[/tex]
Step-by-step explanation:
The given triangle is an isosceles triangle. Thus its two sides are equal and base angles are equal.
So that;
<ACB = <ABC
<ACB = [tex]65^{o}[/tex] (property of an isosceles triangle)
Then,
<ABC + <ACB + <BAC = [tex]180^{o}[/tex]
[tex]65^{o}[/tex] + [tex]65^{o}[/tex] + <BAC = [tex]180^{o}[/tex]
130 + <BAC = [tex]180^{o}[/tex]
<BAC = [tex]180^{o}[/tex] - [tex]130^{o}[/tex]
= [tex]50^{o}[/tex]
<BAC = [tex]50^{o}[/tex]
Thus, <ACB = [tex]65^{o}[/tex] and <BAC = [tex]50^{o}[/tex].