Answer:
[tex]8.16\ \text{m/s}[/tex]
Explanation:
[tex]d_1[/tex] = Initial diameter = 4 cm
[tex]v_1[/tex] = Initial velocity = 1 m/s
[tex]d_2[/tex] = Final diameter = 7.8 m
[tex]v_2[/tex] = Final velocity
[tex]A[/tex] = Area = [tex]\pi\dfrac{d^2}{4}[/tex]
From the continuity equation we get
[tex]A_1v_1=A_2v_2\\\Rightarrow \pi\dfrac{d_1^2}{4}v_1=\pi\dfrac{d_2^2}{4}v_2\\\Rightarrow v_2=\dfrac{d_1^2}{d_2^2}v_1\\\Rightarrow v_2=\dfrac{4^2}{1.4^2}\times 1\\\Rightarrow v_2=8.16\ \text{m/s}[/tex]
The speed of water at the second floor is [tex]8.16\ \text{m/s}[/tex].