A water pipe having a 4.00 cm inside diameter carries water into the basement of a house at a speed of 1.00 m/s and a pressure of 167 kPa. The pipe tapers to 1.4 cm and rises to the second floor 7.8 m above the input point. What is the speed at the second floor

Respuesta :

Answer:

[tex]8.16\ \text{m/s}[/tex]

Explanation:

[tex]d_1[/tex] = Initial diameter = 4 cm

[tex]v_1[/tex] = Initial velocity = 1 m/s

[tex]d_2[/tex] = Final diameter = 7.8 m

[tex]v_2[/tex] = Final velocity

[tex]A[/tex] = Area = [tex]\pi\dfrac{d^2}{4}[/tex]

From the continuity equation we get

[tex]A_1v_1=A_2v_2\\\Rightarrow \pi\dfrac{d_1^2}{4}v_1=\pi\dfrac{d_2^2}{4}v_2\\\Rightarrow v_2=\dfrac{d_1^2}{d_2^2}v_1\\\Rightarrow v_2=\dfrac{4^2}{1.4^2}\times 1\\\Rightarrow v_2=8.16\ \text{m/s}[/tex]

The speed of water at the second floor is [tex]8.16\ \text{m/s}[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico