Respuesta :
Answer:
x= -3 and y= 0
Step-by-step explanation:
5x+2y=-15
2x-2y=-6
7x =-21
x= -3
Putting value of x in equation 1
5(-3) +2y=-15
-15+2y= -15
2y= 0
y= 0
This can be solved with the help of matrices
In matrix form the above equations can be written in the form
[tex]\left[\begin{array}{ccc}5&2\\2&-2\/\end{array}\right][/tex] [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}-15\\-6\\\end{array}\right][/tex]
Let
[tex]\left[\begin{array}{ccc}5&2\\2&-2\/\end{array}\right][/tex] = A [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex] = X and [tex]\left[\begin{array}{ccc}-15\\-6\\\end{array}\right][/tex]= B
Then AX= B
or X= A⁻¹ B
where A⁻¹= adj A/ ║A║ where mod A≠ 0
adj A= [tex]\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right][/tex]
║A║= ( 5*-2- 2*2)= -10-4= -14≠0
X= A⁻¹ B
[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex] =- 1/14 [tex]\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right][/tex] [tex]\left[\begin{array}{ccc}-15\\-6\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex] =- 1/14 [tex]\left[\begin{array}{ccc}-2*-15&+ -2*-6\\-2*-15&+ 5*-6\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex] =- 1/14 [tex]\left[\begin{array}{ccc} 30&+12\\30&+-30\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex] =- 1/14 [tex]\left[\begin{array}{ccc}42\\0\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}-42/14\\0/-14\\\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex] = [tex]\left[\begin{array}{ccc}-3\\0\\\end{array}\right][/tex]
From here x= -3 and y= 0
Solution Set = [(-3,0)]
