Respuesta :

Answer:

x= -3 and y= 0

Step-by-step explanation:

5x+2y=-15

2x-2y=-6    

7x        =-21

x= -3

Putting value of x in equation 1  

5(-3) +2y=-15

-15+2y= -15

2y= 0

y= 0

This can be solved with the help of matrices

In matrix form the above equations can be written in the form

[tex]\left[\begin{array}{ccc}5&2\\2&-2\/\end{array}\right][/tex]  [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex]  = [tex]\left[\begin{array}{ccc}-15\\-6\\\end{array}\right][/tex]

Let

[tex]\left[\begin{array}{ccc}5&2\\2&-2\/\end{array}\right][/tex] = A  [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex]  = X  and  [tex]\left[\begin{array}{ccc}-15\\-6\\\end{array}\right][/tex]= B

Then AX= B

or X= A⁻¹ B

where  A⁻¹= adj A/ ║A║   where mod A≠ 0

adj A=  [tex]\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right][/tex]

║A║= ( 5*-2- 2*2)= -10-4= -14≠0

X= A⁻¹ B

 [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex]    =- 1/14  [tex]\left[\begin{array}{ccc}-2&-2\\-2&5\/\end{array}\right][/tex]   [tex]\left[\begin{array}{ccc}-15\\-6\\\end{array}\right][/tex]

 [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex]    =- 1/14     [tex]\left[\begin{array}{ccc}-2*-15&+ -2*-6\\-2*-15&+ 5*-6\\\end{array}\right][/tex]

 [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex]  =- 1/14 [tex]\left[\begin{array}{ccc} 30&+12\\30&+-30\\\end{array}\right][/tex]

 [tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex]  =- 1/14 [tex]\left[\begin{array}{ccc}42\\0\\\end{array}\right][/tex]

[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex]  = [tex]\left[\begin{array}{ccc}-42/14\\0/-14\\\end{array}\right][/tex]

[tex]\left[\begin{array}{ccc}x\\y\\\end{array}\right][/tex]  = [tex]\left[\begin{array}{ccc}-3\\0\\\end{array}\right][/tex]

From here x= -3 and y= 0

Solution Set = [(-3,0)]

RELAXING NOICE
Relax