Respuesta :
Answer:
The answer is "It must be shown that both [tex]j(k(x))\ and \ k(j(x))=x[/tex]"
Step-by-step explanation:
Given:
[tex]j(x) = 11.6 e^{x} \\\\k(x) =\ln\frac{x}{11.6}[/tex]
To show that both are equal functions, and show that both[tex]j(k(x))\ and\ k(j(x)) =x,[/tex]
For [tex]j(k(x));[/tex]
[tex]j(k(x)) = j[(\ln \frac{x}{11.6})]\\\\j[(\ln (\frac{x}{11.6})] = 11.6e^{\ln (\frac{x}{11.6})}\\\\j[(\ln \frac{x}{11.6})] = 11.6(\frac{x}{11.6})\\\\[/tex](The natural logarithm is canceled by exponential function)
[tex]j[(\ln \frac{x}{11.6})] = 11.6 \times\frac{x}{11.6}\\\\j[(\ln \frac{x}{11.6})] = x\\\\j[k(x)] = x\\\\for\ \ k[j(x)]:\\\\k[j(x)] = k[11.6e^x]\\\\k[11.6e^x] = \ln (\frac{11.6e^x}{11.6})\\\\k[11.6e^x] = \ln(e^x)[/tex]
Its natural logarithm leaving x will nullify expanding universe.
[tex]k[11.6e^x] = x\\\\k[j(x)] = x[/tex]
In the question, it is seen that[tex]j[k(x)] = k[j(x)] = x[/tex], shows that the functions [tex]j(x) = 11.6 e^{x} \ and \ k(x) = \ln \frac{x}{11.6}[/tex] is inverse functions.
