If 186.0 liters of gaseous O_{2} at 1.09 atm and 577.0 ºC are required for the model rocket to climb 1000 feet, how many grams of solid KClO_{3} must be in the rocket engine?

Respuesta :

Answer:

The right answer is "236.53 g".

Explanation:

The given values are:

P = 1.09 atm

V = 186 liters

The reaction will be:

⇒  [tex]KClO_3 (s)\rightarrow 2Kcl(s)+3O_2(g)[/tex]

The moles of O₂ will be:

=  [tex]\frac{PV}{RT}[/tex]

On substituting the values, we get

=  [tex]\frac{1.09\times 186}{0.0821\times 850}[/tex]

=  [tex]\frac{202.47}{69.785}[/tex]

=  [tex]2.90 \ moles[/tex]

Now,

1 mole O₂ is produced from

= [tex]\frac{2}{3} \ mol \ KClO_3[/tex]

then,

2.90 mole O₂ is produced from 2 mol KClO₃

= [tex]\frac{2}{3}\times 2.90[/tex]

= [tex]1.93 \ mol \ KClO_3[/tex]

hence,

The number of grans of solid in the engine will be:

= [tex]1.93\times 122.55[/tex]

= [tex]236.53 \ g[/tex]

RELAXING NOICE
Relax