What is the most precise term for quadrilateral ABCD with vertices A(4,4) B(5,8) C(8,8) and D(8,5)?

A(square
B(rhombus
C(kite
D(parallelogram

Respuesta :

The correct answer should be Kite, I believe it is. 

Answer:

(C) kite

Step-by-step explanation:

The given coordinates of quadrilateral ABCD are A(4,4) B(5,8) C(8,8) and D(8,5). Using the distance formula,

AB=[tex]\sqrt{(8-4)^{2}+(5-4)^2}=\sqrt{16+1}=\sqrt{17}[/tex],

BC=[tex]\sqrt{(8-8)^2+(8-5)^2}=\sqrt{0+9}=3[/tex],

CD=[tex]\sqrt{(8-5)^2+(8-8)^2}=\sqrt{9+0}=3[/tex] and

DA=[tex]\sqrt{(5-4)^2+(8-4)^2}=\sqrt{1+16}=\sqrt{17}[/tex]

Since, the Two disjoint pairs of consecutive sides are congruent as AB=DA and BC=CD.

Thus, by definition of kite, that Two disjoint pairs of consecutive sides are congruent, the given quadrilateral is a kite.

Ver imagen boffeemadrid
RELAXING NOICE
Relax