Respuesta :

Nayefx

Answer:

[tex] \displaystyle a_{1} = 108[/tex]

Step-by-step explanation:

we are given

the sum,common difference and nth term of a geometric sequence

we want to figure out the first term

recall geometric sequence

[tex] \displaystyle S_{ \text{n}} = \frac{ a_{1}(1 - {r}^{n} )}{1 - r} [/tex]

we are given that

  • [tex]S_n=189[/tex]
  • [tex]r=\dfrac{1}{2}[/tex]
  • [tex]n=3[/tex]

thus substitute:

[tex] \displaystyle 189= \frac{ a_{1}(1 - {( \frac{1}{2} )}^{3} )}{1 - \frac{1}{2} } [/tex]

to figure out [tex]a_1[/tex] we need to figure out the equation

simplify denominator:

[tex] \displaystyle \frac{ a_{1}(1 - {( \frac{1}{2} )}^{3} )}{ \dfrac{1}{2} } = 189[/tex]

simplify square:

[tex] \displaystyle \frac{ a_{1}(1 - {( \frac{1}{8} )}^{} )}{ \dfrac{1}{2} } = 189[/tex]

simplify substraction:

[tex] \displaystyle \frac{ a_{1} (\frac{7}{8} )}{ \frac{1}{2} } = 189[/tex]

simplify complex fraction:

[tex] \displaystyle a_{1} (\frac{7}{8} ) \div { \frac{1}{2} } = 189[/tex]

calculate reciprocal:

[tex] \displaystyle a_{1} \frac{7}{8} \times 2 = 189[/tex]

reduce fraction:

[tex] \displaystyle a_{1} \frac{7}{4} \ = 189[/tex]

multiply both sides by 4/7:

[tex] \displaystyle a_{1} \frac{7}{4} \times \frac{4}{7} \ = 189 \times \frac{4}{7} [/tex]

reduce fraction:

[tex] \displaystyle a_{1} = 27\times 4[/tex]

simplify multiplication:

[tex] \displaystyle a_{1} = 108[/tex]

hence,

[tex] \displaystyle a_{1} = 108[/tex]

RELAXING NOICE
Relax