[tex]e^{4x-5} -7 = 11, 243[/tex]

Solve the exponential equation. Use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

Respuesta :

Answer:

  • x = 3.58

Step-by-step explanation:

  • [tex]e^{4x - 5}[/tex] - 7 = 11243
  • [tex]e^{4x - 5}[/tex] = 11250
  • ln [tex]e^{4x - 5}[/tex] = ln 11250
  • 4x - 5 = ln 11250
  • 4x - 5 = 9.33 (rounded)
  • 4x = 14.33
  • x = 14.33 / 4
  • x = 3.58 (rounded)

Answer:

x = 3.58 (2 d.p.)

Step-by-step explanation:

Given equation:

[tex]e^{4x-5}-7=11243[/tex]

Add 7 to both sides:

[tex]\implies e^{4x-5}-7+7=11243+7[/tex]

[tex]\implies e^{4x-5}=11250[/tex]

Take natural logs of both sides:

[tex]\implies \ln e^{4x-5}=\ln 11250[/tex]

[tex]\textsf{Apply the power law}: \quad \ln x^n=n \ln x[/tex]

[tex]\implies (4x-5)\ln e=\ln 11250[/tex]

As ln(e) = 1:

[tex]\implies 4x-5=\ln 11250[/tex]

Add 5 to both sides:

[tex]\implies 4x-5+5=\ln(11250)+5[/tex]

[tex]\implies 4x=\ln(11250)+5[/tex]

Divide both sides by 4:

[tex]\implies \dfrac{4x}{4}=\dfrac{\ln(11250)+5}{4}[/tex]

[tex]\implies x=\dfrac{\ln(11250)+5}{4}[/tex]

Using a calculator:

[tex]\implies x=3.582030852...[/tex]

Therefore:

[tex]\implies x=3.58\:\: \sf (2 \: d.p.)[/tex]

Learn more about log laws here:

https://brainly.com/question/28016999

https://brainly.com/question/27977096

RELAXING NOICE
Relax