Help with this equation please

Answer:
[tex]y=-\frac{2}{3}x+6[/tex]
Step-by-step explanation:
Let the equation of the line representing the given table is,
y = mx + b
Here, m = slope of the line
b = y-intercept
From the given table,
Since, slope of the line passing through [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given by,
m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
Therefore, slope of the line passing through (3, 4) and (4, [tex]\frac{10}{3}[/tex]) will be,
m = [tex]\frac{4-\frac{10}{3} }{3-4}[/tex]
= [tex]\frac{\frac{12-10}{3}}{3-4}[/tex]
= [tex]-\frac{2}{3}[/tex]
Therefore, equation of the line will be,
[tex]y=-\frac{2}{3}x+b[/tex]
Since, this line passes through a point [tex](1, \frac{16}{3})[/tex],
By satisfying the equation with the given point,
[tex]\frac{16}{3}=-\frac{2}{3}(1)+b[/tex]
[tex]b=\frac{16}{3}+\frac{2}{3}[/tex]
[tex]b=\frac{18}{3}[/tex]
[tex]b=6[/tex]
Therefore, equation of the line will be,
[tex]y=-\frac{2}{3}x+6[/tex]