Respuesta :

Answer:

[tex]y=-\frac{2}{3}x+6[/tex]

Step-by-step explanation:

Let the equation of the line representing the given table is,

y = mx + b

Here, m = slope of the line

b = y-intercept

From the given table,

Since, slope of the line passing through [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given by,

m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

Therefore, slope of the line passing through (3, 4) and (4, [tex]\frac{10}{3}[/tex]) will be,

m = [tex]\frac{4-\frac{10}{3} }{3-4}[/tex]

   = [tex]\frac{\frac{12-10}{3}}{3-4}[/tex]

   = [tex]-\frac{2}{3}[/tex]

Therefore, equation of the line will be,

[tex]y=-\frac{2}{3}x+b[/tex]

Since, this line passes through a point [tex](1, \frac{16}{3})[/tex],

By satisfying the equation with the given point,

[tex]\frac{16}{3}=-\frac{2}{3}(1)+b[/tex]

[tex]b=\frac{16}{3}+\frac{2}{3}[/tex]

[tex]b=\frac{18}{3}[/tex]

[tex]b=6[/tex]

Therefore, equation of the line will be,

[tex]y=-\frac{2}{3}x+6[/tex]

RELAXING NOICE
Relax