Does this limit exist? Show steps

Answer:
Yes, the limit does exist.
Step-by-step explanation:
By definition, a limit in the form:
[tex]\displaystyle \lim_{x\to a}f(x)[/tex]
Exists if and only if:
[tex]\displaystyle \lim_{x\to a^-}f(x)=\lim_{x\to a^+}f(x)[/tex]
We are given the limit:
[tex]\displaystyle \lim_{x\to 2}\frac{x^2+x-6}{x^2-4}[/tex]
So, in order to prove that this limit exists, we simply have to show that:
[tex]\displaystyle \lim_{x\to 2^-}\frac{x^2+x-6}{x^2-4}=\displaystyle \lim_{x\to 2^+}\frac{x^2+x-6}{x^2-4}[/tex]
Let's do the left-hand side first. We can factor the function:
[tex]=\displaystyle \lim_{x\to 2^-}\frac{(x+3)(x-2)}{(x+2)(x-2)}[/tex]
Simplify:
[tex]\displaystyle =\lim_{x\to 2^-}\frac{x+3}{x+2}[/tex]
By direct substitution:
[tex]\displaystyle =\frac{(2)+3}{(2)+2}=\frac{5}{4}[/tex]
Now, we can evaluate the right-hand side. Again, factor:
[tex]=\displaystyle \lim_{x\to 2^+}\frac{(x+3)(x-2)}{(x+2)(x-2)}[/tex]
Simplify:
[tex]\displaystyle =\lim_{x\to 2^+}\frac{x+3}{x+2}[/tex]
And by direct substitution:
[tex]\displaystyle =\frac{(2)+3}{(2)+2}=\frac{5}{4}[/tex]
Since both the left- and right-hand limits equal 5/4, our original limit does indeed exist.