Answer:
B
Step-by-step explanation:
Use the distance formula in 3 dimensions
d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2+(z_{2}-z_{1})^2 }[/tex]
with (x₁, y₁, z₁ ) = (3, 4, 10) and (x₂, y₂, z₂ ) = (8, 4, - 2)
d = [tex]\sqrt{(8-3)^2+(4-4)^2+(-2-10)^2}[/tex]
= [tex]\sqrt{5^2+0^2+(-12)^2}[/tex]
= [tex]\sqrt{25+144}[/tex]
= [tex]\sqrt{169}[/tex]
= 13 → B