2. A quadratic function has a vertex at (3,-10) and passes through the point (0,8).
Which of the following equations best represents the function?
F.y = 2(x + 3)^2 + 8
G.y = 2(x + 3)^2 - 10
H. y = (x - 3)^2 - 10
J.y = 2(x - 3)^2 - 10

Respuesta :

Given:

Vertex of a quadratic function is at (3,-10).

The quadratic function passes through the point (0,8).

To find:

The equation of the quadratic function.

Solution:

The vertex form of a quadratic function is:

[tex]y=a(x-h)^2+k[/tex]              ...(i)

Where, (h,k) is vertex and a is a constant.

Vertex of a quadratic function is at (3,-10). So, [tex]h=3,k=-10[/tex].

[tex]y=a(x-3)^2+(-10)[/tex]

[tex]y=a(x-3)^2-10[/tex]              ...(ii)

The quadratic function passes through the point (0,8).

Putting [tex]x=0,y=8[/tex] in (ii), we get

[tex]8=a(0-3)^2-10[/tex]

[tex]8+10=a(-3)^2[/tex]

[tex]18=9a[/tex]

Divide both sides by 9.

[tex]2=a[/tex]

Putting [tex]a=2[/tex] in (ii), we get

[tex]y=2(x-3)^2-10[/tex]

Therefore, the correct option is J.

Answer:

J

Step-by-step explanation:

RELAXING NOICE
Relax