Respuesta :
Given:
Vertex of a quadratic function is at (3,-10).
The quadratic function passes through the point (0,8).
To find:
The equation of the quadratic function.
Solution:
The vertex form of a quadratic function is:
[tex]y=a(x-h)^2+k[/tex] ...(i)
Where, (h,k) is vertex and a is a constant.
Vertex of a quadratic function is at (3,-10). So, [tex]h=3,k=-10[/tex].
[tex]y=a(x-3)^2+(-10)[/tex]
[tex]y=a(x-3)^2-10[/tex] ...(ii)
The quadratic function passes through the point (0,8).
Putting [tex]x=0,y=8[/tex] in (ii), we get
[tex]8=a(0-3)^2-10[/tex]
[tex]8+10=a(-3)^2[/tex]
[tex]18=9a[/tex]
Divide both sides by 9.
[tex]2=a[/tex]
Putting [tex]a=2[/tex] in (ii), we get
[tex]y=2(x-3)^2-10[/tex]
Therefore, the correct option is J.
