Respuesta :

Answer:

[tex]Q = 96.4^\circ[/tex]

[tex]R = 58.4[/tex]

[tex]P =25.2[/tex]

Step-by-step explanation:

Given

See attachment for PQR

Required

Solve the triangle

From the attached triangle, all sidea of the triangle are known.

i.e.

[tex]PQ = 6\\QR=3\\PR=7[/tex]

So, we are to solve for [tex]\angle P, Q \& R[/tex]

Using cosine rule:

[tex]a^2 = b^2 + c^2 - 2bcCosA[/tex]

To solve for Q, we have:

[tex]PR^2 = PQ^2 + QR^2 - 2 * PQ * QR Cos(Q)[/tex]

[tex]7^2 = 6^2 + 3^2 - 2 * 6 * 3 * \cos(Q)[/tex]

[tex]49 = 36 + 9 - 36 * \cos(Q)[/tex]

Collect like terms

[tex]49 - 36 - 9 = - 36 * \cos(Q)[/tex]

[tex]4 = - 36 * \cos(Q)[/tex]

Divide both sides by -36

[tex]\cos(Q) = \frac{-4}{36}[/tex]

[tex]\cos(Q) = -0.1111[/tex]

Take arc cos of both sides

[tex]Q = cos^{-1}(0.1111)[/tex]

[tex]Q = 96.4^\circ[/tex]

To solve for R, we make use of sine rule;

[tex]\frac{a}{\sin A} = \frac{b}{\sin B}[/tex]

So, we have:

[tex]\frac{PQ}{\sin R} = \frac{PR}{\sin Q}[/tex]

[tex]\frac{6}{\sin R} = \frac{7}{\sin 96.4}[/tex]

Cross multiply

[tex]\sin R * 7 = 6 * \sin 96.4[/tex]

Solve for sin R

[tex]\sin R = \frac{6 * \sin 96.4}{7}[/tex]

[tex]\sin R = \frac{6 * \0.9938}{7}[/tex]

[tex]\sin R = 0.8518[/tex]

Take arc sin of both sides

[tex]R = sin^{-1}(0.8518)[/tex]

[tex]R = 58.4[/tex]

Solving P:

[tex]P+ Q + R = 180[/tex] --- angles in a triangle

Solve for P

[tex]P =180-Q-R[/tex]

[tex]P =180-96.4-58.4[/tex]

[tex]P =25.2[/tex]

Ver imagen MrRoyal
RELAXING NOICE
Relax