Respuesta :
Answer:
[tex]Q = 96.4^\circ[/tex]
[tex]R = 58.4[/tex]
[tex]P =25.2[/tex]
Step-by-step explanation:
Given
See attachment for PQR
Required
Solve the triangle
From the attached triangle, all sidea of the triangle are known.
i.e.
[tex]PQ = 6\\QR=3\\PR=7[/tex]
So, we are to solve for [tex]\angle P, Q \& R[/tex]
Using cosine rule:
[tex]a^2 = b^2 + c^2 - 2bcCosA[/tex]
To solve for Q, we have:
[tex]PR^2 = PQ^2 + QR^2 - 2 * PQ * QR Cos(Q)[/tex]
[tex]7^2 = 6^2 + 3^2 - 2 * 6 * 3 * \cos(Q)[/tex]
[tex]49 = 36 + 9 - 36 * \cos(Q)[/tex]
Collect like terms
[tex]49 - 36 - 9 = - 36 * \cos(Q)[/tex]
[tex]4 = - 36 * \cos(Q)[/tex]
Divide both sides by -36
[tex]\cos(Q) = \frac{-4}{36}[/tex]
[tex]\cos(Q) = -0.1111[/tex]
Take arc cos of both sides
[tex]Q = cos^{-1}(0.1111)[/tex]
[tex]Q = 96.4^\circ[/tex]
To solve for R, we make use of sine rule;
[tex]\frac{a}{\sin A} = \frac{b}{\sin B}[/tex]
So, we have:
[tex]\frac{PQ}{\sin R} = \frac{PR}{\sin Q}[/tex]
[tex]\frac{6}{\sin R} = \frac{7}{\sin 96.4}[/tex]
Cross multiply
[tex]\sin R * 7 = 6 * \sin 96.4[/tex]
Solve for sin R
[tex]\sin R = \frac{6 * \sin 96.4}{7}[/tex]
[tex]\sin R = \frac{6 * \0.9938}{7}[/tex]
[tex]\sin R = 0.8518[/tex]
Take arc sin of both sides
[tex]R = sin^{-1}(0.8518)[/tex]
[tex]R = 58.4[/tex]
Solving P:
[tex]P+ Q + R = 180[/tex] --- angles in a triangle
Solve for P
[tex]P =180-Q-R[/tex]
[tex]P =180-96.4-58.4[/tex]
[tex]P =25.2[/tex]

Otras preguntas
