Solution :
a). The current market value of the unlevered equity
[tex]$=\frac{75\% \times \$52 \text{ million} + 25\% \times \$22 \text{ million}}{1+10 \%}$[/tex]
= $ 40.45 million
b). The market value of the equity one year from now is
[tex]$=(75\% \times \$52 \text{ million} + 25\% \times \$22 \text{ million})- \$18 \ \text{million}$[/tex]
= $ 44.5 million - $ 18 million
= $ 26.5 million
c). The expected return on the equity without the leverage = 10%
The expected return on the equity with the leverage = [tex]$=10\% +\frac{ \$22 \text{ million}}{\$ 26.5 \text{ million}}$[/tex]
= 0.93 %
d). The lowest possible value of equity without the leverage = $20 million - $ 18 million
= $ 2 million
The lowest return on the equity without the leverage = 10%
The lowest return on the equity with the leverage = 2 % as the equity is eroded.