Answer:
[tex]P(Z)=\frac{8}{15}[/tex]
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=10[/tex]
Green pins [tex]x=7[/tex]
Blue pins [tex]y=3[/tex]
Generally the probability of getting two green is mathematically given by
[tex]P(2X)=\frac{7}{10}*\frac{6}{9}[/tex]
[tex]P(2X)=\frac{7}{15}[/tex]
Generally the probability of getting two blue is mathematically given by
[tex]P(2Y)=\frac{3}{10}*\frac{2}{9}[/tex]
[tex]P(2Y)=\frac{1}{15}[/tex]
Therefore the probability that both pins are the same color P(Z)
[tex]P(Z)=P(2Y)+P(2X)\\P(Z)=\frac{7}{15}+\frac{1}{15}[/tex]
[tex]P(Z)=\frac{8}{15}[/tex]