Answer:
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Explanation:
For this exercise we must use conservation of energy
the electric potential energy is
U = [tex]k \frac{q_1q_2}{r_{12}}[/tex]
for the proton at x = -1 m
U₁ =[tex]- k \frac{e^2 }{r+1}[/tex]
for the electron at x = 1 m
U₂ = [tex]k \frac{e^2 }{r-1}[/tex]
starting point.
Em₀ = K + U₁ + U₂
Em₀ = [tex]\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1}[/tex]
final point
Em_f = [tex]k e^2 ( -\frac{1}{r_2 +1} + \frac{1}{r_2 -1})[/tex]
energy is conserved
Em₀ = Em_f
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²( [tex]\frac{2}{(r_2+1)(r_2-1)}[/tex] )
we substitute the values
½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [ [tex]- \frac{1}{20+1} + \frac{1}{20-1}[/tex] ) = 9 109 (1.6 10-19) ²( [tex]\frac{2}{r_2^2 -1}[/tex] )
2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ ( [tex]\frac{1}{r_2^2 -1}[/tex] )
2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷ [tex]\frac{1}{r_2^2 -1}[/tex]
[tex]\frac{2.0475 \ 10^{-28} }{1.1549 \ 10^{-37} } = \frac{1}{r_2^2 -1}[/tex]
r₂² -1 = (4.443 10⁸)⁻¹
r2 = [tex]\sqrt{1 + 2.25 10^{-9}}[/tex]
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m