Respuesta :

Answer:

There does not exist any horizontal asymptote of the function [tex]f(x)=2x-5[/tex]

Explanation:

[tex]y=M[/tex] is a horizontal asymptote of the function [tex]f(x)[/tex] if either [tex]\lim_{x\rightarrow \infty }f(x)=M[/tex] or [tex]\lim_{x\rightarrow -\infty }f(x)=M[/tex], and [tex]M[/tex] is finite.

Given: [tex]f(x)=2x-5[/tex]

[tex]\lim_{x\rightarrow \infty }(2x-5)=\infty \\\lim_{x\rightarrow -\infty }(2x-5)=-\infty[/tex]

Therefore,

there does not exist any horizontal asymptote of the function [tex]f(x)=2x-5[/tex]

RELAXING NOICE
Relax