Respuesta :

Answer:

b) [tex]\sin(B) = \frac{\sqrt 2}{2}[/tex]

e) [tex]\tan(B) = 1[/tex]

Step-by-step explanation:

Given

The attached triangle

Required

The true statement about B

The given options show that we determine the correct trigonometry ratio of B.

So, we have:

[tex]\cos(B) = \frac{Adjacent}{Hypotenuse}[/tex]

This gives:

[tex]\cos(B) = \frac{a}{c}[/tex]

Where:

[tex]a = 3mm\\c = 3\sqrt 2 mm[/tex]

[tex]\cos(B) = \frac{3}{3\sqrt 2}[/tex]

3 cancels out

[tex]\cos(B) = \frac{1}{\sqrt 2}[/tex]

Rationalize

[tex]\cos(B) = \frac{1}{\sqrt 2}* \frac{\sqrt 2}{\sqrt 2}[/tex]

[tex]\cos(B) = \frac{\sqrt 2}{\sqrt 2*\sqrt 2}[/tex]

[tex]\cos(B) = \frac{\sqrt 2}{12}[/tex]

Also:

[tex]\sin(B) = \frac{Opposite}{Hypotenuse}[/tex]

This gives:

[tex]\sin(B) = \frac{b}{c}[/tex]

Where:

[tex]b = 3mm\\c = 3\sqrt 2 mm[/tex]

[tex]\sin(B) = \frac{3}{3\sqrt 2}[/tex]

3 cancels out

[tex]\sin(B) = \frac{1}{\sqrt 2}[/tex]

Rationalize

[tex]\sin(B) = \frac{1}{\sqrt 2}* \frac{\sqrt 2}{\sqrt 2}[/tex]

[tex]\sin(B) = \frac{\sqrt 2}{\sqrt 2 * \sqrt 2 }[/tex]

[tex]\sin(B) = \frac{\sqrt 2}{2}[/tex]

Lastly:

[tex]\tan(B) = \frac{\sin(B)}{\cos(B)}[/tex]

This gives:

[tex]\tan(B) = \frac{\sqrt{2}/2}{\sqrt{2}/2}[/tex]

[tex]\tan(B) = 1[/tex]

Hence, (b) and (e) are true

RELAXING NOICE
Relax