what are the lengths of side a and b?

Answer:
[tex]a =\frac{\sqrt 2}{2}[/tex] m
[tex]b=\frac{\sqrt 2}{2}[/tex] m
Step-by-step explanation:
Given
The attached triangle
Required
Find a and b
To do this, we make use of the following trigonometry ratio
[tex]\sin(\theta) = \frac{Opposite}{Hypotenuse}[/tex]
So, we have:
[tex]\sin(45) = \frac{a}{c}[/tex]
[tex]\sin(45) = \frac{b}{c}[/tex]
Where
[tex]c = 1[/tex]
So, we have:
[tex]\sin(45) = \frac{a}{1}[/tex]
[tex]\sin(45) = a[/tex]
Rewrite as:
[tex]a =\sin(45)[/tex]
In radical form:
[tex]\sin(45) =\frac{\sqrt 2}{2}[/tex]
So:
[tex]a =\frac{\sqrt 2}{2}[/tex]
Similarly:
[tex]\sin(45) = \frac{b}{c}[/tex]
[tex]\sin(45) = \frac{b}{1}[/tex]
[tex]\sin(45) = b[/tex]
Rewrite as:
[tex]b = \sin(45)[/tex]
In radical form:
[tex]\sin(45) =\frac{\sqrt 2}{2}[/tex]
So:
[tex]b=\frac{\sqrt 2}{2}[/tex]