Respuesta :

Answer:

[tex]\tan(30) = \frac{\sqrt 3}{3}[/tex]

[tex]\tan(60) = \sqrt 3[/tex]

Step-by-step explanation:

Given

The attached triangle

Required

Find [tex]\tan(30)[/tex] and [tex]\tan(60)[/tex]

The tangent of an angle is calculated as:

[tex]\tan(\theta) = \frac{Opposite}{Adjacent}[/tex]

So, we have:

[tex]\tan(30) = \frac{b}{a}[/tex]

This gives:

[tex]\tan(30) = \frac{3}{3\sqrt 3}[/tex]

3 cancels out

[tex]\tan(30) = \frac{1}{\sqrt 3}[/tex]

Rationalize

[tex]\tan(30) = \frac{1}{\sqrt 3} * \frac{\sqrt 3}{\sqrt 3}[/tex]

[tex]\tan(30) = \frac{\sqrt 3}{3}[/tex]

Similarly;

[tex]\tan(60) = \frac{a}{b}[/tex]

This gives:

[tex]\tan(60) = \frac{3\sqrt 3}{3}[/tex]

3 cancels out

[tex]\tan(60) = \sqrt 3[/tex]

RELAXING NOICE
Relax