Answer:
See attachment for rectangle
Step-by-step explanation:
Given
[tex]A = (-6,0)[/tex]
[tex]B = (-4,0)[/tex]
[tex]Area = 12[/tex]
Required
Draw the rectangle
First, we calculate the distance between A and B using distance formula;
[tex]AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
So, we have:
[tex]AB = \sqrt{(-6 - -4)^2 + (0- 0)^2}[/tex]
[tex]AB = \sqrt{(-2)^2 + (0)^2}[/tex]
[tex]AB = \sqrt{4 + 0}[/tex]
[tex]AB = \sqrt{4}[/tex]
[tex]AB = 2[/tex]
The above represents the length of the triangle.
Next, calculate the width using:
[tex]Length * Width = Area[/tex]
[tex]2* Width = 12[/tex]
Divide both sides by 2
[tex]Width = 6[/tex]
This implies that, the width of the rectangle is 6 units.
We have:
[tex]A = (-6,0)[/tex]
[tex]B = (-4,0)[/tex]
Since A and B are at the upper left and right, then the ther two points are below.
6 units below each of the above point are:
[tex]C = (-6,0-6)\\[/tex] => [tex]C = (-6,-6)[/tex]
[tex]D = (-4,0-6)[/tex] => [tex]D = (-4,-6)[/tex]
Hence, the points of the rectangle are:
[tex]A = (-6,0)[/tex]
[tex]B = (-4,0)[/tex]
[tex]C = (-6,-6)[/tex]
[tex]D = (-4,-6)[/tex]
See attachment for rectangle