The upper-left coordinates on a rectangle are (-6,0)(−6,0)left parenthesis, minus, 6, comma, 0, right parenthesis, and the upper-right coordinates are (-4,0)(−4,0)left parenthesis, minus, 4, comma, 0, right parenthesis. The rectangle has an area of 121212 square units. Draw the rectangle on the coordinate plane below.

Respuesta :

Answer:

See attachment for rectangle

Step-by-step explanation:

Given

[tex]A = (-6,0)[/tex]

[tex]B = (-4,0)[/tex]

[tex]Area = 12[/tex]

Required

Draw the rectangle

First, we calculate the distance between A and B using distance formula;

[tex]AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]

So, we have:

[tex]AB = \sqrt{(-6 - -4)^2 + (0- 0)^2}[/tex]

[tex]AB = \sqrt{(-2)^2 + (0)^2}[/tex]

[tex]AB = \sqrt{4 + 0}[/tex]

[tex]AB = \sqrt{4}[/tex]

[tex]AB = 2[/tex]

The above represents the length of the triangle.

Next, calculate the width using:

[tex]Length * Width = Area[/tex]

[tex]2* Width = 12[/tex]

Divide both sides by 2

[tex]Width = 6[/tex]

This implies that, the width of the rectangle is 6 units.

We have:

[tex]A = (-6,0)[/tex]

[tex]B = (-4,0)[/tex]

Since A and B are at the upper left and right, then the ther two points are below.

6 units below each of the above point are:

[tex]C = (-6,0-6)\\[/tex] => [tex]C = (-6,-6)[/tex]

[tex]D = (-4,0-6)[/tex] => [tex]D = (-4,-6)[/tex]

Hence, the points of the rectangle are:

[tex]A = (-6,0)[/tex]

[tex]B = (-4,0)[/tex]

[tex]C = (-6,-6)[/tex]

[tex]D = (-4,-6)[/tex]

See attachment for rectangle

Ver imagen MrRoyal
RELAXING NOICE
Relax