Answer:
Part A:
[tex]P(X=x)=n_{C_{x}}*p^x*(1-p)^{n-x}[/tex]
x is a binomial Random Variable.
Part B:
Value of p=0.8
Value of n=20
Part C:
P(X=15)=0.17456
Part D:
P(X≥15)=0.80417
Part E:
E(x)=16
E(x) tells us that out of 20 tracks the SBIRS will detect from 16 tracks.
Step-by-step explanation:
Part A:
Binomial Distribution is used because the number of tracks and the probability to find the intruding object is constant for all tracks
It means:
[tex]P(X=x)=n_{C_{x}}*p^x*(1-p)^{n-x}[/tex]
x is a binomial Random Variable.
Part B:
Value of p=0.8
Value of n=20
Part C:
x=15
[tex]P(X=15)=20_{C_{15}}*0.8^{15}*(1-0.8)^{20-15}\\[/tex]
By solving above Expression:
P(X=15)=0.17456
Part D:
P(X≥15)=P(X=15)+P(X=17)+P(X=16)+P(X=18)+P(X=19)+P(X=20)
[tex]P(X=15)=20_{C_{15}}*0.8^{15}*(1-0.8)^{20-15}\\[/tex]
P(X=15)=0.17456
[tex]P(X=16)=20_{C_{16}}*0.8^{16}*(1-0.8)^{20-16}\\P(X=16)=0.21819[/tex]
[tex]P(X=17)=20_{C_{17}}*0.8^{17}*(1-0.8)^{20-17}\\P(X=17)=0.20536[/tex]
[tex]P(X=18)=20_{C_{18}}*0.8^{18}*(1-0.8)^{20-18}\\P(X=18)=0.13691\\\\P(X=19)=20_{C_{19}}*0.8^{19}*(1-0.8)^{20-19}\\P(X=19)=0.05765\\\\P(X=20)=20_{C_{20}}*0.8^{20}*(1-0.8)^{20-20}\\P(X=20)=0.01153[/tex]
Now, Adding Probabilities:
[tex]P(X=15)+P(X=17)+P(X=16)+P(X=18)+P(X=19)+P(X=20)\\=0.17456+0.21819+0.20536+0.13691+0.05765+0.01153\\[/tex]
P(X≥15)=0.80417
Part E:
Mean Distribution:
E(x)=n*p
E(x)=20*0.8
E(x)=16
E(x) tells us that out of 20 tracks the SBIRS will detect from 16 tracks.