Respuesta :

Answer:

(a) and (b)

[tex]f(g(x)) = g(f(x)) = x[/tex]

(c) and (d)

[tex]f(g(x)) =-x + 8[/tex]

[tex]g(f(x)) = x + 8[/tex]

Step-by-step explanation:

Given

(a) to (d)

Required

Find f(g(x)) and g(f(x)) for each pair

For (a) and (b), we have:

[tex]f(x) = \frac{3}{x}[/tex]

[tex]g(x) = \frac{3}{x}[/tex]

Calculate f(g(x))

[tex]f(x) = \frac{3}{x}[/tex]

[tex]f(g(x)) = \frac{3}{g(x)}[/tex]

Substitute 3/x for g(x)

[tex]f(g(x)) = \frac{3}{3/x}[/tex]

Rewrite as:

[tex]f(g(x)) = 3/\frac{3}{x}[/tex]

[tex]f(g(x)) = 3*\frac{x}{3}[/tex]

[tex]f(g(x)) = x[/tex]

Since f(x) = g(x), then:

[tex]f(g(x)) = g(f(x)) = x[/tex]

For (c) and (d)

[tex]f(x) =x + 4[/tex]

[tex]g(x) =-x + 4[/tex]

Solving f(g(x)), we have:

[tex]f(x) =x + 4[/tex]

[tex]f(g(x)) =g(x) + 4[/tex]

Substitute [tex]g(x) =-x + 4[/tex]

[tex]f(g(x)) =-x + 4 + 4[/tex]

[tex]f(g(x)) =-x + 8[/tex]

Calculating g(f(x))

[tex]g(x) =-x + 4[/tex]

[tex]g(f(x)) = -f(x) + 4[/tex]

Substitute: [tex]f(x) =x + 4[/tex]

[tex]g(f(x)) = x + 4 + 4[/tex]

[tex]g(f(x)) = x + 8[/tex]

RELAXING NOICE
Relax