Answer:
a) m_v = m_s (([tex]\frac{w_o}{w}[/tex])² - 1) , b) m_v = 1.07 10⁻¹⁴ g
Explanation:
a) The angular velocity of a simple harmonic motion is
w² = k / m
where k is the spring constant and m is the mass of the oscillator
let's apply this expression to our case,
silicon only
w₉² = [tex]\frac{K}{m_s}[/tex]
k = w₀² m_s
silicon with virus
w² = [tex]\frac{k}{m_s + m_v}[/tex]
k = w² (m_v + m_s)
in the two expressions the constant k is the same and q as the one property of the silicon bar, let us equal
w₀² m_s = w² (m_v + m_s)
m_v = ([tex]\frac{w_o}{w}[/tex])² m_s - m_s
m_v = m_s (([tex]\frac{w_o}{w}[/tex])² - 1)
b) let's calculate
m_v = 2.13 10⁻¹⁶ [([tex]\frac{20.4}{2.85}[/tex])² - 1)]
m_v = 1.07 10⁻¹⁴ g