Answer:
[tex]0.261\ \text{m}[/tex]
Explanation:
[tex]\Delta f[/tex] = Change in frequency = 2.1 Hz
[tex]f[/tex] = Frequency of source of sound = 440 Hz
[tex]v_m[/tex]= Maximum of the microphone
[tex]v[/tex] = Speed of sound = 343 m/s
[tex]T[/tex] = Time period = 2 s
We have the relation
[tex]\Delta f=2f\dfrac{v_m}{v}\\\Rightarrow v_m=\dfrac{\Delta fv}{2f}\\\Rightarrow v_m=\dfrac{2.1\times 343}{2\times 440}\\\Rightarrow v_m=0.8185\ \text{m/s}[/tex]
Amplitude is given by
[tex]A=\dfrac{v_m T}{2\pi}\\\Rightarrow A=\dfrac{0.8185\times 2}{2\pi}\\\Rightarrow A=0.261\ \text{m}[/tex]
The amplitude of the simple harmonic motion is [tex]0.261\ \text{m}[/tex].