Given:
The equation is:
[tex]\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{7}{12}[/tex]
To find:
The value of x.
Solution:
Formulae used:
[tex](a+b)^2=a^2+2ab+b^2[/tex]
[tex](a-b)^2=a^2-2ab+b^2[/tex]
[tex](a-b)(a+b)=a^2-b^2[/tex]
We have,
[tex]\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{7}{12}[/tex]
Taking LCM, we get
[tex]\dfrac{(x+1)^2-(x^2-1)^2}{(x-1)(x+1)}=\dfrac{7}{12}[/tex]
[tex]\dfrac{x^2+2x+1-(x^2-2x+1)}{x^2-1^2}=\dfrac{7}{12}[/tex]
On cross multiplication, we get
[tex]12(x^2+2x+1-x^2+2x-1)=7(x^2-1)[/tex]
[tex]12(4x)=7x^2-7[/tex]
[tex]48x=7x^2-7[/tex]
[tex]0=7x^2-48x-7[/tex]
Splitting the middle term, we get
[tex]7x^2-49x+x-7=0[/tex]
[tex]7x(x-7)+1(x-7)=0[/tex]
[tex](7x+1)(x-7)=0[/tex]
[tex]x=-\dfrac{1}{7},7[/tex]
Therefore, the values of x are [tex]-\dfrac{1}{7}[/tex] and [tex]7[/tex].