Respuesta :
Answer:
C) There is sufficient evidence to suggest that the toll booths are not used in equal proportions.
Step-by-step explanation:
First of all, we have to understand that this is a question asking to draw a conclusion from the chi-square GOF (goodness of fit) test information that was given in the problem text.
From there, we use the usual sentence format, and in this case, we use the sentence format for when the p-value is less than α:
Since the p-value (0.008) is less than the alpha value (0.05), we reject the null hypothesis ([tex]H_0[/tex]). There is sufficient evidence to suggest that the toll booths are not used in equal proportions.
To elaborate, we get this answer by knowing that since the p-value is so low, the chance of getting a test statistic that extreme (too low or too high depending on the context) is significantly unlikely.
The correct option regarding the significance level is C. There is sufficient evidence to suggest that the toll booths are not used in equal proportions.
How to explain the significance level?
In this question, we simply have to deduce a conclusion from the chi-square test information that was given.
In this case, the p-value (0.008) is simply less than the alpha value (0.05), therefore, we will reject the null hypothesis.
This implies that there is sufficient evidence to suggest that the toll booths are not used in equal proportions.
Learn more about significance level on:
https://brainly.com/question/4599596